#include #include #include #include #define TEMP_PIN 0 #define IMPULS0_PIN 1 #define IMPULS1_PIN 2 #define TAST_PIN 3 #define FET0_PIN 0 #define FET1_PIN 1 #define TIMEOUT 51 /* 2 seconds */ const uint16_t LED_GREEN_TEMP = 300; const uint16_t LED_RED_TEMP = 1000; #define TARGET_TEMP_MIN 300 #define TARGET_TEMP_MAX 1520 uint8_t setting_timeout = 0; uint8_t adc_pos = 0; uint16_t adc_sum = 0; uint16_t target = 0; uint16_t temperature = 0; // all temperatures are in tenth of degrees celsius uint8_t heat_pwm = 0; // softpwm counter uint8_t heat_power = 0; // requested heating power; 0..255 //uint8_t heat_on[2] = {0, 128}; //uint8_t heat_off[2] = {128, 0}; uint8_t input_state = 0; uint8_t dev_state = 0; // whether the device is on or off #define TEN_SECONDS 256 uint16_t startup = TEN_SECONDS; uint8_t eeprom_write = 0; #define ONE_MINUTE 1536 uint16_t eeprom_clk = ONE_MINUTE; /* gray code to change lookup table, index is old state .. new state */ int8_t state_change[16] = {0, 1, -1, 0, -1, 0, 0, 1, 1, 0, 0, -1, 0, -1, 1, 0}; //int8_t state_change[16] = {0, -1, 1, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, -1, 0}; ISR(TIM1_OVF_vect) { /* timeout for displaying target temperature */ if(setting_timeout) {setting_timeout--;} if(startup) {startup--;} if(eeprom_clk) {eeprom_clk--;} else { eeprom_write = 1; eeprom_clk = ONE_MINUTE; } /* incremtening softpwm, toggling output if needed */ heat_pwm++; if(heat_pwm == 0 && heat_power > 0) { PORTB |= (1 << FET0_PIN); } else if(heat_pwm > heat_power) { PORTB &= ~(1 << FET0_PIN); } if(heat_pwm == 128 && heat_power > 0) { PORTB |= (1 << FET1_PIN); } else if( ((heat_pwm + 128) & 0xff) > heat_power ) { PORTB &= ~(1 << FET1_PIN); } /* if(heat_pwm == heat_on[0]) {PORTB |= (1 << FET0_PIN);} if(heat_pwm == heat_off[0]) {PORTB &= ~(1 << FET0_PIN);} if(heat_pwm == heat_on[1]) {PORTB |= (1 << FET1_PIN);} if(heat_pwm == heat_off[1]) {PORTB &= ~(1 << FET1_PIN);} */ } ISR(PCINT0_vect) { uint8_t new_state = (PINA & ((1 << IMPULS1_PIN) | (1 << IMPULS0_PIN) | (1 << TAST_PIN))) >> 1; uint8_t diff = new_state ^ input_state; if(!diff) {return;} if(diff & (1 << (TAST_PIN - 1)) && new_state & (1 << (TAST_PIN - 1))) { dev_state = !dev_state; } int8_t change = state_change[((input_state & 3) << 2) | (new_state & 3)]; if(change) { target += change * 10; // 1 celsius per step if(target < TARGET_TEMP_MIN) {target = TARGET_TEMP_MIN;} else if(target > TARGET_TEMP_MAX) {target = TARGET_TEMP_MAX;} setting_timeout = TIMEOUT; } input_state = new_state; } inline uint8_t control_output(void) { if(temperature > target) { return 0; } else if(temperature + 100 > target) { return (target - temperature) * 192 / 100; } else { return 192; //return (uint8_t)((uint16_t)((uint32_t)((uint32_t)255*target)/temperature)/TARGET_TEMP_MAX); } } // Measure: 5V --- 10k --- --- PTY81-121 -- GND // | // uC ADC pin (with 1.11V reference) inline uint16_t linearize_temp(uint16_t temp_in) { uint16_t temp_out = TARGET_TEMP_MAX; //burning // made from datasheet by: // for i in 677 740 807 877 951 1029 1111 1196 1286 1378 1475 1575 1679 1786 1896 2003 2103 2189; do calc 5*$i/9860*65472/1.11; done static const uint16_t coeffs[] PROGMEM = { // in, out 20250, 0, // -20 celsius 22134, 0, // -10 celsius 24138, 0, // 0 celsius 26232, 100, // 10 celsius 28445, 200, 30778, 300, 33231, 400, // 40 celsius 35773, 500, // .. 38465, 600, 41216, 700, 44118, 800, 47109, 900, 50220, 1000, 53420, 1100, 56711, 1200, 59911, 1300, 62902, 1400, 65474, 1500, // 150 celsius 65535, TARGET_TEMP_MAX // 152 celsius, made-up, not from datasheet }; uint8_t i=2; for(; i < sizeof(coeffs) / sizeof(coeffs[0]); i += 2) { if(temp_in < pgm_read_word(&coeffs[i])) { temp_out = (uint16_t) ( pgm_read_word(&coeffs[i-1]) + (uint32_t) ( (uint32_t) (temp_in - pgm_read_word(&coeffs[i-2])) * (pgm_read_word(&coeffs[i+1])-pgm_read_word(&coeffs[i-1])) ) / (pgm_read_word(&coeffs[i])-pgm_read_word(&coeffs[i-2]))); break; } } return temp_out; } inline void io_init(void) { PORTA = (1 << TAST_PIN) | (1 << IMPULS1_PIN) | (1 << IMPULS0_PIN);/* enable pullups on inputs */ PORTB = 0; DDRA = (1 << PA7);/* led outputs ... */ DDRB = (1 << PB2) | (1 << FET0_PIN) | (1 << FET1_PIN);/* ... and FET output */ input_state = PINA & ((1 << IMPULS1_PIN) | (1 << IMPULS0_PIN) | (1 << TAST_PIN)); } inline void led_init(void) { TCCR0A = (1 << COM0A1) | (1 << COM0B1) | (1 << COM0A0) | (1 << WGM01) | (1 << WGM00);/* pwm enable: fast, A inverted, B not */ TCCR0B = (1 << CS00);/* no prescaler */ OCR0A = OCR0B = 0; } inline void led_set(uint16_t value) { uint8_t pwmval; if (LED_GREEN_TEMP <= value && value < LED_RED_TEMP) { pwmval = ((uint32_t) (value-LED_GREEN_TEMP) * 255)/(LED_RED_TEMP-LED_GREEN_TEMP); } else if (value <= LED_GREEN_TEMP) { pwmval = 0; } else { pwmval = 255; } OCR0A = pwmval; OCR0B = pwmval; } inline void led_off(void) { OCR0A = 0; OCR0B = 255; } inline void adc_init(void) { ADMUX = (1 << REFS1) | (TEMP_PIN << MUX0);/* Vref = 1.1, pin selection */ ADCSRA = (1 << ADEN) | (1 << ADSC) | (1 << ADATE) | (1 << ADPS2);/* adc enable, free running mode, prescaler 16 */ DIDR0 = (1 << TEMP_PIN);/* disable digital input on adc pin */ /* result in (ADCH << 8) | ADCL, accessable as ADC */ } inline void heat_init(void) { TCCR1A = (1 << WGM11) | (1 << WGM10); TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS10);/* some mode allowing to set timer TOP, no prescaler */ TIMSK1 = (1 << TOIE1);/* interupt on overflow */ OCR1A = 39063; /* read eeprom */ while(EECR & (1 << EEPE)) {;} EEAR = 0; EECR = (1 << EERE); target = EEDR << 8; EEARL = 1; EECR |= (1 << EERE); target |= EEDR; } inline void input_init(void) { GIMSK = (1 << PCIE0);/* interrupt on change on PORT A */ PCMSK0 = (1 << TAST_PIN) | (1 << IMPULS1_PIN) | (1 << IMPULS0_PIN); } int main(void) { io_init(); adc_init(); heat_init(); input_init(); led_init(); sei(); for(;;) { if(ADCSRA & (1 << ADIF)) { /* new adc result */ ADCSRA |= (1 << ADIF); adc_sum += ADC; if(++adc_pos == 64) { temperature = linearize_temp(adc_sum); if(temperature < 400) { startup = 2 * TEN_SECONDS; } adc_sum = 0; adc_pos = 0; if(dev_state) { heat_power = control_output(); if(startup && heat_power > 96) {heat_power = 96;} } else { heat_power = 0; } } } if(!dev_state) {led_off();} else if(setting_timeout) {led_set(target);} else {led_set(temperature);} if(eeprom_write && dev_state) { while(EECR & (1 << EEPE)) {;} EEARL = 0; EEDR = (target >> 8) & 0xff; EECR |= (1 << EEMPE); EECR |= (1 << EEPE); while(EECR & (1 << EEPE)) {;} EEARL = 1; EEDR = target & 0xff; EECR |= (1 << EEMPE); EECR |= (1 << EEPE); eeprom_write = 0; } } return 0; }