lcd funktioniert, wenn auch noch leichte bugs (EOL). USB funktioniert noch nicht.

master
Paul Goeser 15 years ago
parent 2b91c6fadb
commit 74e441fec3

Binary file not shown.

@ -1,7 +1,7 @@
DEFINES += -DF_CPU=8e6
DEFINES += -DF_CPU=16000000
CFLAGS += -save-temps
OBJECTS = main.o
OBJECTS = usbdrv/usbdrvasm.o usbdrv/usbdrv.o main.o display.o lcd/lcd.o

@ -1,5 +1,5 @@
#DEFINES +=
CFLAGS += -Wall -Os -I. -mmcu=atmega8
CFLAGS += -Wall -Os -I. -mmcu=atmega88
# further optimization:
# this removes dead code and does global linker optimization
@ -25,10 +25,10 @@ all: firmware.hex
$(COMPILE) -S $< -o $@
flash: all
avrdude -c usbasp -p m8 -U flash:w:firmware.hex
avrdude -c usbasp -p m88 -U flash:w:firmware.hex
fuses:
avrdude -c usbasp -p m8 -U lfuse:w:0xe4:m -U hfuse:w:0xd9:m # internal 8Mhz oscillator
avrdude -c usbasp -p m88 -U lfuse:w:0xdf:m -U hfuse:w:0xde:m # external oscillator
## what are the source dependencies
@ -42,10 +42,6 @@ fuses:
#main.c: version.h
version.h: .svn/entries
export LANG=POSIX; (svn info 2>/dev/null || echo "Revision: unknown") | awk '/^Revision:/ {print "#define SVNVERSION \"" $$2 "\""};' >version.h
clean:
rm -f *.o *.hex *.obj *.i *.s *.d */*.i */*.s */*.o */*.d version.h

@ -1,6 +1,5 @@
#include <string.h>
#include "display.h"
#include "debug.h"
char display_content[40]; // is zeroed by being in .bss
@ -169,7 +168,6 @@ void display_temperature(int16_t temperature){
char c;
temperature *= 10;
// debug_int(PSTR("temperature"),temperature);
for(i=3; i>=0; i--){
if(i==1) {
fillzero = 1;
@ -204,8 +202,6 @@ char getdigit(int16_t *input, int16_t div, int8_t *fillzero){
if(*input < 0){
*input = - *input; /* to convert from (binary) 2s-complement
to (ascii) sign and magnitude */
debug_int(PSTR("getdigit"),*input);
debug_int(PSTR("getdigit2"),div);
return '-';
} else {
digit = *input / div;

@ -27,6 +27,7 @@
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/wdt.h>
#include <util/delay.h>
#include "lcd.h"
@ -81,7 +82,7 @@ static inline void _delayFourCycles(unsigned int __count)
delay for a minimum of <us> microseconds
the number of loops is calculated at compile-time from MCU clock frequency
*************************************************************************/
#define delay(us) _delayFourCycles( ( ( 1*(XTAL/4000) )*us)/1000 )
#define delay(us) _delay_us(us)
/* toggle Enable Pin to initiate write */

@ -57,14 +57,14 @@
* ports by adapting the LCD_DATAx_PORT and LCD_DATAx_PIN definitions.
*
*/
#define LCD_DATA_PORT PORTD /**< port for the LCD lines */
#define LCD_RS_PORT PORTD /**< port for RS line */
#define LCD_RS_PIN 4 /**< pin for RS line */
#define LCD_RW_PORT PORTD /**< port for RW line */
#define LCD_DATA_PORT PORTC /**< port for the LCD lines */
#define LCD_RS_PORT PORTB /**< port for RS line */
#define LCD_RS_PIN 0 /**< pin for RS line */
#define LCD_RW_PORT PORTC /**< port for RW line */
#define LCD_RW_PIN 5 /**< pin for RW line */
#define LCD_E_PORT PORTD /**< port for Enable line */
#define LCD_E0_PIN 6 /**< pin for Enable line 0 */
#define LCD_E1_PIN 6 /**< pin for Enable line 1 */
#define LCD_E_PORT PORTC /**< port for Enable line */
#define LCD_E0_PIN 4 /**< pin for Enable line 0 */
#define LCD_E1_PIN 4 /**< pin for Enable line 1 */
#define LCD_CTRL_0 (1<<0)
#define LCD_CTRL_1 (1<<1)

@ -4,83 +4,31 @@
#include <avr/eeprom.h>
#include <util/delay.h>
#include <stdio.h>
#include <string.h>
#include <usbdrv/usbdrv.h>
#include "version.h"
#include "main.h"
#include "display.h"
#include "1wire/1wire.h"
#include "sensors.h"
#include "menu.h"
#include "delay.h"
#include "debug.h"
uint32_t ledval[4], ledacc[4];
/* 0: led1 colour
* 1: led1 brightness
* 2: led2
* 3: led3
*/
uint8_t run_mainloop; //set to 1 if mainloop needs running
uint8_t run_1wireloop; //set to 1 if 1wire loop needs running
uint8_t buttlold, buttrold, butttold;
uint8_t butttbounce;
uint8_t buttonevent;
int8_t buttoninc;
uint8_t EEMEM display_stored_brightness;
uint8_t EEMEM display_stored_contrast;
uint8_t EEMEM flowtemp_stored;
uint8_t EEMEM flowtemp_stored_range;
uint8_t EEMEM flowtemp_stored_alarm;
uint8_t flowtemp;
uint8_t flowtemp_range;
uint8_t flowtemp_alarm;
uint8_t volatile timer1_acc;
void hardinit(){
/* initializes the hardware */
// DDRB: XXXXX111
DDRB = 0xff;
// DDRC: -X000111
DDRC = 0x07;
// DDRD: 1XXXXXXX;
DDRD = 0x80;
DDRB = _BV(1) | _BV(2) | _BV(0);
DDRC = 0x3f;
// no pullups; all digital outputs can take care of themselves
PORTB = 0x00;
PORTC = 0x00;
PORTD = 0x00;
/* our event driver gets called with 10kHz frequency
* (to allow for proper LED PWM)
* Thats 100us or 800 cycles.
* Priority is: 1wire-bit first, then buttons, then LED-PWMs, then LCD, then the rest of 1wire.
* Sending a 1wire-bit takes about 70us.
*/
TCCR0 = 0x02; // prescaler: clk/8
TCNT0 = 0xff-100; // 100 cycles of 1us each
TIMSK |= 0x01; // enable interrupt
/* hardware pwm for brightness/contrast:
*/
TCCR1A = _BV(COM1A1) | _BV(COM1A0) | _BV(COM1B1) | _BV(WGM10);
TCCR1A = _BV(COM1A1) | _BV(COM1B1) | _BV(WGM10);
TCCR1B = _BV(WGM12) | _BV(CS11); // clk/8 prescaler, 4kHz PWM-freq.
TIMSK &=( (~_BV(3)) & (~_BV(4)) & (~_BV(5))); //disable all timer1-interrupts
TIMSK |= _BV(2); // but enable overflow
OCR1A = 0xff-15; // contrast
OCR1B = 200; // brightness
OCR1A = 15; // contrast
OCR1B = 50; // brightness
// init LCD:
lcd_init(1);
@ -99,374 +47,45 @@ void softinit(){
lcd_defchar(1, LCD_CHAR_BAR, lcd_bar_char);
lcd_defchar(1, LCD_CHAR_DEGREE, lcd_degree_char);
sensors_search();
menu_init();
set_display_brightness(load_display_brightness());
set_display_contrast(load_display_contrast());
set_flowtemp(load_flowtemp());
set_flowtemp_range(load_flowtemp_range());
set_flowtemp_alarm(load_flowtemp_alarm());
sei();
}
void mainloop(){
// called with about 80Hz
static uint8_t ctr_subsec; // counts to 79, wraps around every second
static uint8_t ctr_sec; // counts to 255, use with modulo for rare events
int16_t vorlaufdiff;
uint16_t ledbrightness;
menu_display();
ctr_subsec++;
if(ctr_subsec >= 80){
ctr_subsec = 0;
ctr_sec++;
// starting here: stuff that happens every second (or rarer)
sensors_startconv();
if(ctr_sec % 32 == 0){
sensors_search(); // overrides sensors_startconv
}
}
/* warning for flow too hot */
/* "inverted" blink-code compared to duo-led */
if (sensoravg[sensor_which[0]]/256 >= flowtemp_alarm) {
if (ctr_subsec < 40) {
ledval[3] = 0;
} else {
ledval[3] = 65535;
}
}
/* do colour/brightness for duo-led*/
if (sensoravg[sensor_which[0]]/256 > flowtemp) {
ledval[0] = 0; // red
} else {
ledval[0] = 65535; // green
}
vorlaufdiff = sensoravg[sensor_which[0]]/256 - (int16_t)flowtemp;
vorlaufdiff = vorlaufdiff > 0 ? vorlaufdiff : -vorlaufdiff;
if (vorlaufdiff <= flowtemp_range / 4) {
// flowtemp OK
ledbrightness = 0;
} else { // flowtemp out of range
if (vorlaufdiff < flowtemp_range) {
// inside range, scale brightness linearly with difference
ledbrightness = (4 * vorlaufdiff - flowtemp_range) * 256 / 3 / flowtemp_range;
} else {
// outside margin, blink as a warning
if (ctr_subsec < 40) {
ledbrightness = 255;
} else {
ledbrightness = 0;
}
}
}
usbMsgLen_t usbFunctionSetup(uchar data[8])
{
usbRequest_t *rq = (void *)data;
static uchar dataBuffer[4]; /* buffer must stay valid when usbFunctionSetup returns */
ledval[1] = ledbrightness * ledbrightness;
if(rq->bRequest == 1){ /* echo -- used for reliability tests */
dataBuffer[0] = rq->wValue.bytes[0];
dataBuffer[1] = rq->wValue.bytes[1];
dataBuffer[2] = rq->wIndex.bytes[0];
dataBuffer[3] = rq->wIndex.bytes[1];
usbMsgPtr = dataBuffer; /* tell the driver which data to return */
return 4;
}
return 0; /* default for not implemented requests: return no data back to host */
}
void main(){
int __attribute__((noreturn)) main(void){
hardinit();
softinit();
usbInit();
for(;;){
if(run_1wireloop){
run_1wireloop=0;
sensors_1wirebitloop();
}
if(run_mainloop){
run_mainloop=0;
mainloop();
}
}
}
void buttonpoll(){ // runs with 1.2kHz
uint8_t l,r,t,flanks,dir;
l=BUTTPIN & _BV(BUTTLPIN);
r=BUTTPIN & _BV(BUTTRPIN);
t=BUTTPIN & _BV(BUTTTPIN);
// debounce code
if (t != butttold && !butttbounce ) {
butttold = t;
butttbounce = BUTT_BOUNCE;
if (t == 0) { // active low
buttonevent |= BUTTEV_PUSH;
}
}
flanks=0;
dir=0;
if (l != buttlold) {
flanks += 1;
}
if (r != buttrold) {
flanks += 1;
dir = 1;
}
if (flanks == 1){ // we need to have exactly one flank, 0 flanks are no
// change, and 2 flanks are too fast (error)
if (l) {
dir ^= 1;
}
if (r) {
dir ^= 1;
}
if ((r && l) || (!r && !l)) {
buttoninc += dir ? -1 : 1;
}
}
buttlold = l;
buttrold = r;
if(butttbounce){
butttbounce -= 1;
}
}
display_puts("Hallo, Welt!\n\n");
display_update();
void ledsoftpwm(){
// LED softpwm:
uint8_t i;
for(i=1; i<4; ++i){
ledacc[i] += ledval[i];
if(ledacc[i]>0xffff){
ledacc[i] -= 0xffff;
if(i==1){
ledacc[0] += ledval[0];
if(ledacc[0]>0xffff){
ledacc[0] -= 0xffff;
LED1PORT |= _BV(LED1APIN);
LED1PORT &= ~_BV(LED1BPIN);
} else {
LED1PORT |= _BV(LED1BPIN);
LED1PORT &= ~_BV(LED1APIN);
}
}
if(i==2){
LED2PORT &= ~_BV(LED2PIN);
}
if(i==3){
LED3PORT &= ~_BV(LED3PIN);
}
} else {
if(i==1){
LED1PORT &= ~(_BV(LED1BPIN) | _BV(LED1APIN));
}
if(i==2){
LED2PORT |= _BV(LED2PIN);
}
if(i==3){
LED3PORT |= _BV(LED3PIN);
}
}
}
}
void set_display_brightness(uint8_t display_brightness) {
// set "runtime-brightness", will be lost at poweroff!
if (display_brightness < 1 || display_brightness > 16) {
// erratic values
display_brightness = 10;
}
OCR1B = (display_brightness * display_brightness) - 1;
}
void store_display_brightness(uint8_t new_brightness) {
// store brightness-value to eeprom for next boot
if (new_brightness < 1 || new_brightness > 16) {
// erratic values, abort
return;
}
uint8_t cur_brightness = eeprom_read_byte(&display_stored_brightness);
if (new_brightness != cur_brightness) {
// value hast changed, save to eeprom
eeprom_write_byte(&display_stored_brightness, new_brightness);
}
}
uint8_t load_display_brightness() {
uint8_t display_brightness = eeprom_read_byte(&display_stored_brightness);
if (display_brightness < 1 || display_brightness > 16) {
// erratic values
display_brightness = 10;
store_display_brightness(display_brightness);
}
return display_brightness;
}
void set_display_contrast(uint8_t display_contrast) {
// set "runtime-contrast", will be lost at poweroff!
if (display_contrast > 32) {
// erratic values
display_contrast = 16;
}
OCR1A = 0xff - 64 + 2 * display_contrast;
}
void store_display_contrast(uint8_t new_contrast) {
// store contrast-value to eeprom for next boot
if (new_contrast > 32) {
// erratic values
return;
}
uint8_t cur_contrast = eeprom_read_byte(&display_stored_contrast);
if (new_contrast != cur_contrast) {
// value hast changed, save to eeprom
eeprom_write_byte(&display_stored_contrast, new_contrast);
}
}
uint8_t load_display_contrast() {
uint8_t display_contrast = eeprom_read_byte(&display_stored_contrast);
if (display_contrast > 32) {
// erratic values
display_contrast = 16;
store_display_contrast(display_contrast);
}
return display_contrast;
}
void set_flowtemp(uint8_t new_flowtemp) {
// set "runtime-flowtemp", will be lost at poweroff!
if ((new_flowtemp > FLOWTEMP_MAX) || (new_flowtemp < FLOWTEMP_MIN)) {
// erratic values
flowtemp = FLOWTEMP_DEFAULT;
}
flowtemp = new_flowtemp;
}
void store_flowtemp(uint8_t new_flowtemp) {
// store flowtemp-value to eeprom for next boot
if ((new_flowtemp > FLOWTEMP_MAX) || (new_flowtemp < FLOWTEMP_MIN)) {
// erratic values
return;
}
uint8_t cur_flowtemp = eeprom_read_byte(&flowtemp_stored);
if (new_flowtemp != cur_flowtemp) {
// value hast changed, save to eeprom
eeprom_write_byte(&flowtemp_stored, new_flowtemp);
}
}
uint8_t load_flowtemp() {
flowtemp = eeprom_read_byte(&flowtemp_stored);
if ((flowtemp > FLOWTEMP_MAX) || (flowtemp < FLOWTEMP_MIN)) {
// erratic values
flowtemp = FLOWTEMP_DEFAULT;
store_flowtemp(flowtemp);
}
return flowtemp;
}
void set_flowtemp_range(uint8_t new_flowtemp_range) {
// set "runtime-flowtemp_range", will be lost at poweroff!
if (new_flowtemp_range > FLOWTEMP_RANGE_MAX) {
// erratic values
flowtemp_range = FLOWTEMP_RANGE_DEFAULT;
}
flowtemp_range = new_flowtemp_range;
}
void store_flowtemp_range(uint8_t new_flowtemp_range) {
// store flowtemp-value to eeprom for next boot
if (new_flowtemp_range > FLOWTEMP_RANGE_MAX) {
// erratic values
return;
}
uint8_t cur_flowtemp_range = eeprom_read_byte(&flowtemp_stored_range);
if (new_flowtemp_range != cur_flowtemp_range) {
// value has changed, save to eeprom
eeprom_write_byte(&flowtemp_stored_range, new_flowtemp_range);
}
}
uint8_t load_flowtemp_range() {
flowtemp_range = eeprom_read_byte(&flowtemp_stored_range);
if (flowtemp_range > FLOWTEMP_RANGE_MAX) {
// erratic values
flowtemp_range = FLOWTEMP_RANGE_DEFAULT;
store_flowtemp_range(flowtemp_stored_range);
}
return flowtemp_range;
}
void set_flowtemp_alarm(uint8_t new_flowtemp_alarm) {
// set "runtime-flowtemp_alarm", will be lost at poweroff!
flowtemp_alarm = new_flowtemp_alarm;
}
void store_flowtemp_alarm(uint8_t new_flowtemp_alarm) {
// store flowtemp-alarm-value to eeprom for next boot
uint8_t cur_flowtemp_alarm = eeprom_read_byte(&flowtemp_stored_alarm);
if (new_flowtemp_alarm != cur_flowtemp_alarm) {
// value has changed, save to eeprom
eeprom_write_byte(&flowtemp_stored_alarm, new_flowtemp_alarm);
}
}
uint8_t load_flowtemp_alarm() {
flowtemp_alarm = eeprom_read_byte(&flowtemp_stored_alarm);
if (flowtemp_alarm > FLOWTEMP_ALARM_MAX) {
// erratic values
flowtemp_alarm = FLOWTEMP_ALARM_DEFAULT;
store_flowtemp_alarm(flowtemp_stored_alarm);
for(;;){
usbPoll();
}
return flowtemp_alarm;
}
ISR(TIMER0_OVF_vect){
static uint8_t counter;
TCNT0 = 0xff-100;
counter+=1;
ledsoftpwm();
if(counter%8 == 0){ //1.2kHz
buttonpoll();
}
if(counter%128 == 0){ //ca. 80Hz
run_mainloop = 1;
}
run_1wireloop = 1; // 10kHz
}
/*
ISR(TIMER1_OVF_vect, ISR_NAKED){
@ -475,9 +94,6 @@ ISR(TIMER1_OVF_vect, ISR_NAKED){
asm volatile ("out %1, %0\n" : "=r" (sreg_store) : "I" (_SFR_IO_ADDR(SREG)));
reti();
}*/
ISR(TIMER1_OVF_vect){
timer1_acc++;
}

@ -0,0 +1 @@
../vusb-20100715/usbdrv/

@ -0,0 +1,376 @@
/* Name: usbconfig.h
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2005-04-01
* Tabsize: 4
* Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
* This Revision: $Id: usbconfig-prototype.h 785 2010-05-30 17:57:07Z cs $
*/
#ifndef __usbconfig_h_included__
#define __usbconfig_h_included__
/*
General Description:
This file is an example configuration (with inline documentation) for the USB
driver. It configures V-USB for USB D+ connected to Port D bit 2 (which is
also hardware interrupt 0 on many devices) and USB D- to Port D bit 4. You may
wire the lines to any other port, as long as D+ is also wired to INT0 (or any
other hardware interrupt, as long as it is the highest level interrupt, see
section at the end of this file).
+ To create your own usbconfig.h file, copy this file to your project's
+ firmware source directory) and rename it to "usbconfig.h".
+ Then edit it accordingly.
*/
/* ---------------------------- Hardware Config ---------------------------- */
#define USB_CFG_IOPORTNAME D
/* This is the port where the USB bus is connected. When you configure it to
* "B", the registers PORTB, PINB and DDRB will be used.
*/
#define USB_CFG_DMINUS_BIT 4
/* This is the bit number in USB_CFG_IOPORT where the USB D- line is connected.
* This may be any bit in the port.
*/
#define USB_CFG_DPLUS_BIT 2
/* This is the bit number in USB_CFG_IOPORT where the USB D+ line is connected.
* This may be any bit in the port. Please note that D+ must also be connected
* to interrupt pin INT0! [You can also use other interrupts, see section
* "Optional MCU Description" below, or you can connect D- to the interrupt, as
* it is required if you use the USB_COUNT_SOF feature. If you use D- for the
* interrupt, the USB interrupt will also be triggered at Start-Of-Frame
* markers every millisecond.]
*/
#define USB_CFG_CLOCK_KHZ (F_CPU/1000)
/* Clock rate of the AVR in kHz. Legal values are 12000, 12800, 15000, 16000,
* 16500, 18000 and 20000. The 12.8 MHz and 16.5 MHz versions of the code
* require no crystal, they tolerate +/- 1% deviation from the nominal
* frequency. All other rates require a precision of 2000 ppm and thus a
* crystal!
* Since F_CPU should be defined to your actual clock rate anyway, you should
* not need to modify this setting.
*/
#define USB_CFG_CHECK_CRC 0
/* Define this to 1 if you want that the driver checks integrity of incoming
* data packets (CRC checks). CRC checks cost quite a bit of code size and are
* currently only available for 18 MHz crystal clock. You must choose
* USB_CFG_CLOCK_KHZ = 18000 if you enable this option.
*/
/* ----------------------- Optional Hardware Config ------------------------ */
/* #define USB_CFG_PULLUP_IOPORTNAME D */
/* If you connect the 1.5k pullup resistor from D- to a port pin instead of
* V+, you can connect and disconnect the device from firmware by calling
* the macros usbDeviceConnect() and usbDeviceDisconnect() (see usbdrv.h).
* This constant defines the port on which the pullup resistor is connected.
*/
/* #define USB_CFG_PULLUP_BIT 4 */
/* This constant defines the bit number in USB_CFG_PULLUP_IOPORT (defined
* above) where the 1.5k pullup resistor is connected. See description
* above for details.
*/
/* --------------------------- Functional Range ---------------------------- */
#define USB_CFG_HAVE_INTRIN_ENDPOINT 0
/* Define this to 1 if you want to compile a version with two endpoints: The
* default control endpoint 0 and an interrupt-in endpoint (any other endpoint
* number).
*/
#define USB_CFG_HAVE_INTRIN_ENDPOINT3 0
/* Define this to 1 if you want to compile a version with three endpoints: The
* default control endpoint 0, an interrupt-in endpoint 3 (or the number
* configured below) and a catch-all default interrupt-in endpoint as above.
* You must also define USB_CFG_HAVE_INTRIN_ENDPOINT to 1 for this feature.
*/
#define USB_CFG_EP3_NUMBER 3
/* If the so-called endpoint 3 is used, it can now be configured to any other
* endpoint number (except 0) with this macro. Default if undefined is 3.
*/
/* #define USB_INITIAL_DATATOKEN USBPID_DATA1 */
/* The above macro defines the startup condition for data toggling on the
* interrupt/bulk endpoints 1 and 3. Defaults to USBPID_DATA1.
* Since the token is toggled BEFORE sending any data, the first packet is
* sent with the oposite value of this configuration!
*/
#define USB_CFG_IMPLEMENT_HALT 0
/* Define this to 1 if you also want to implement the ENDPOINT_HALT feature
* for endpoint 1 (interrupt endpoint). Although you may not need this feature,
* it is required by the standard. We have made it a config option because it
* bloats the code considerably.
*/
#define USB_CFG_SUPPRESS_INTR_CODE 0
/* Define this to 1 if you want to declare interrupt-in endpoints, but don't
* want to send any data over them. If this macro is defined to 1, functions
* usbSetInterrupt() and usbSetInterrupt3() are omitted. This is useful if
* you need the interrupt-in endpoints in order to comply to an interface
* (e.g. HID), but never want to send any data. This option saves a couple
* of bytes in flash memory and the transmit buffers in RAM.
*/
#define USB_CFG_INTR_POLL_INTERVAL 10
/* If you compile a version with endpoint 1 (interrupt-in), this is the poll
* interval. The value is in milliseconds and must not be less than 10 ms for
* low speed devices.
*/
#define USB_CFG_IS_SELF_POWERED 1
/* Define this to 1 if the device has its own power supply. Set it to 0 if the
* device is powered from the USB bus.
*/
#define USB_CFG_MAX_BUS_POWER 0
/* Set this variable to the maximum USB bus power consumption of your device.
* The value is in milliamperes. [It will be divided by two since USB
* communicates power requirements in units of 2 mA.]
*/
#define USB_CFG_IMPLEMENT_FN_WRITE 0
/* Set this to 1 if you want usbFunctionWrite() to be called for control-out
* transfers. Set it to 0 if you don't need it and want to save a couple of
* bytes.
*/
#define USB_CFG_IMPLEMENT_FN_READ 0
/* Set this to 1 if you need to send control replies which are generated
* "on the fly" when usbFunctionRead() is called. If you only want to send
* data from a static buffer, set it to 0 and return the data from
* usbFunctionSetup(). This saves a couple of bytes.
*/
#define USB_CFG_IMPLEMENT_FN_WRITEOUT 0
/* Define this to 1 if you want to use interrupt-out (or bulk out) endpoints.
* You must implement the function usbFunctionWriteOut() which receives all
* interrupt/bulk data sent to any endpoint other than 0. The endpoint number
* can be found in 'usbRxToken'.
*/
#define USB_CFG_HAVE_FLOWCONTROL 0
/* Define this to 1 if you want flowcontrol over USB data. See the definition
* of the macros usbDisableAllRequests() and usbEnableAllRequests() in
* usbdrv.h.
*/
#define USB_CFG_DRIVER_FLASH_PAGE 0
/* If the device has more than 64 kBytes of flash, define this to the 64 k page
* where the driver's constants (descriptors) are located. Or in other words:
* Define this to 1 for boot loaders on the ATMega128.
*/
#define USB_CFG_LONG_TRANSFERS 0
/* Define this to 1 if you want to send/receive blocks of more than 254 bytes
* in a single control-in or control-out transfer. Note that the capability
* for long transfers increases the driver size.
*/
/* #define USB_RX_USER_HOOK(data, len) if(usbRxToken == (uchar)USBPID_SETUP) blinkLED(); */
/* This macro is a hook if you want to do unconventional things. If it is
* defined, it's inserted at the beginning of received message processing.
* If you eat the received message and don't want default processing to
* proceed, do a return after doing your things. One possible application
* (besides debugging) is to flash a status LED on each packet.
*/
/* #define USB_RESET_HOOK(resetStarts) if(!resetStarts){hadUsbReset();} */
/* This macro is a hook if you need to know when an USB RESET occurs. It has
* one parameter which distinguishes between the start of RESET state and its
* end.
*/
/* #define USB_SET_ADDRESS_HOOK() hadAddressAssigned(); */
/* This macro (if defined) is executed when a USB SET_ADDRESS request was
* received.
*/
#define USB_COUNT_SOF 0
/* define this macro to 1 if you need the global variable "usbSofCount" which
* counts SOF packets. This feature requires that the hardware interrupt is
* connected to D- instead of D+.
*/
/* #ifdef __ASSEMBLER__
* macro myAssemblerMacro
* in YL, TCNT0
* sts timer0Snapshot, YL
* endm
* #endif
* #define USB_SOF_HOOK myAssemblerMacro
* This macro (if defined) is executed in the assembler module when a
* Start Of Frame condition is detected. It is recommended to define it to
* the name of an assembler macro which is defined here as well so that more
* than one assembler instruction can be used. The macro may use the register
* YL and modify SREG. If it lasts longer than a couple of cycles, USB messages
* immediately after an SOF pulse may be lost and must be retried by the host.
* What can you do with this hook? Since the SOF signal occurs exactly every
* 1 ms (unless the host is in sleep mode), you can use it to tune OSCCAL in
* designs running on the internal RC oscillator.
* Please note that Start Of Frame detection works only if D- is wired to the
* interrupt, not D+. THIS IS DIFFERENT THAN MOST EXAMPLES!
*/
#define USB_CFG_CHECK_DATA_TOGGLING 0
/* define this macro to 1 if you want to filter out duplicate data packets
* sent by the host. Duplicates occur only as a consequence of communication
* errors, when the host does not receive an ACK. Please note that you need to
* implement the filtering yourself in usbFunctionWriteOut() and
* usbFunctionWrite(). Use the global usbCurrentDataToken and a static variable
* for each control- and out-endpoint to check for duplicate packets.
*/
#define USB_CFG_HAVE_MEASURE_FRAME_LENGTH 0
/* define this macro to 1 if you want the function usbMeasureFrameLength()
* compiled in. This function can be used to calibrate the AVR's RC oscillator.
*/
#define USB_USE_FAST_CRC 0
/* The assembler module has two implementations for the CRC algorithm. One is
* faster, the other is smaller. This CRC routine is only used for transmitted
* messages where timing is not critical. The faster routine needs 31 cycles
* per byte while the smaller one needs 61 to 69 cycles. The faster routine
* may be worth the 32 bytes bigger code size if you transmit lots of data and
* run the AVR close to its limit.
*/
/* -------------------------- Device Description --------------------------- */
#define USB_CFG_VENDOR_ID 0xc0, 0x16 /* = 0x16c0 = 5824 = voti.nl */
/* USB vendor ID for the device, low byte first. If you have registered your
* own Vendor ID, define it here. Otherwise you may use one of obdev's free
* shared VID/PID pairs. Be sure to read USB-IDs-for-free.txt for rules!
* *** IMPORTANT NOTE ***
* This template uses obdev's shared VID/PID pair for Vendor Class devices
* with libusb: 0x16c0/0x5dc. Use this VID/PID pair ONLY if you understand
* the implications!
*/
#define USB_CFG_DEVICE_ID 0xdc, 0x05 /* = 0x05dc = 1500 */
/* This is the ID of the product, low byte first. It is interpreted in the
* scope of the vendor ID. If you have registered your own VID with usb.org
* or if you have licensed a PID from somebody else, define it here. Otherwise
* you may use one of obdev's free shared VID/PID pairs. See the file
* USB-IDs-for-free.txt for details!
* *** IMPORTANT NOTE ***
* This template uses obdev's shared VID/PID pair for Vendor Class devices
* with libusb: 0x16c0/0x5dc. Use this VID/PID pair ONLY if you understand
* the implications!
*/
#define USB_CFG_DEVICE_VERSION 0x00, 0x01
/* Version number of the device: Minor number first, then major number.
*/
#define USB_CFG_VENDOR_NAME 'g', 'h', 'o', 's', 't', 'd', 'u', 'b', '.', 'd', 'e'
#define USB_CFG_VENDOR_NAME_LEN 11
/* These two values define the vendor name returned by the USB device. The name
* must be given as a list of characters under single quotes. The characters
* are interpreted as Unicode (UTF-16) entities.
* If you don't want a vendor name string, undefine these macros.
* ALWAYS define a vendor name containing your Internet domain name if you use
* obdev's free shared VID/PID pair. See the file USB-IDs-for-free.txt for
* details.
*/
#define USB_CFG_DEVICE_NAME 'O', 'k', 'u', 'u'
#define USB_CFG_DEVICE_NAME_LEN 4
/* Same as above for the device name. If you don't want a device name, undefine
* the macros. See the file USB-IDs-for-free.txt before you assign a name if
* you use a shared VID/PID.
*/
/*#define USB_CFG_SERIAL_NUMBER 'N', 'o', 'n', 'e' */
/*#define USB_CFG_SERIAL_NUMBER_LEN 0 */
/* Same as above for the serial number. If you don't want a serial number,
* undefine the macros.
* It may be useful to provide the serial number through other means than at
* compile time. See the section about descriptor properties below for how
* to fine tune control over USB descriptors such as the string descriptor
* for the serial number.
*/
#define USB_CFG_DEVICE_CLASS 0xff /* set to 0 if deferred to interface */
#define USB_CFG_DEVICE_SUBCLASS 0
/* See USB specification if you want to conform to an existing device class.
* Class 0xff is "vendor specific".
*/
#define USB_CFG_INTERFACE_CLASS 0 /* define class here if not at device level */
#define USB_CFG_INTERFACE_SUBCLASS 0
#define USB_CFG_INTERFACE_PROTOCOL 0
/* See USB specification if you want to conform to an existing device class or
* protocol. The following classes must be set at interface level:
* HID class is 3, no subclass and protocol required (but may be useful!)
* CDC class is 2, use subclass 2 and protocol 1 for ACM
*/
/* #define USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH 42 */
/* Define this to the length of the HID report descriptor, if you implement
* an HID device. Otherwise don't define it or define it to 0.
* If you use this define, you must add a PROGMEM character array named
* "usbHidReportDescriptor" to your code which contains the report descriptor.
* Don't forget to keep the array and this define in sync!
*/
/* #define USB_PUBLIC static */
/* Use the define above if you #include usbdrv.c instead of linking against it.
* This technique saves a couple of bytes in flash memory.
*/
/* ------------------- Fine Control over USB Descriptors ------------------- */
/* If you don't want to use the driver's default USB descriptors, you can
* provide our own. These can be provided as (1) fixed length static data in
* flash memory, (2) fixed length static data in RAM or (3) dynamically at
* runtime in the function usbFunctionDescriptor(). See usbdrv.h for more
* information about this function.
* Descriptor handling is configured through the descriptor's properties. If
* no properties are defined or if they are 0, the default descriptor is used.
* Possible properties are:
* + USB_PROP_IS_DYNAMIC: The data for the descriptor should be fetched
* at runtime via usbFunctionDescriptor(). If the usbMsgPtr mechanism is
* used, the data is in FLASH by default. Add property USB_PROP_IS_RAM if
* you want RAM pointers.
* + USB_PROP_IS_RAM: The data returned by usbFunctionDescriptor() or found
* in static memory is in RAM, not in flash memory.
* + USB_PROP_LENGTH(len): If the data is in static memory (RAM or flash),
* the driver must know the descriptor's length. The descriptor itself is
* found at the address of a well known identifier (see below).
* List of static descriptor names (must be declared PROGMEM if in flash):
* char usbDescriptorDevice[];
* char usbDescriptorConfiguration[];
* char usbDescriptorHidReport[];
* char usbDescriptorString0[];
* int usbDescriptorStringVendor[];
* int usbDescriptorStringDevice[];
* int usbDescriptorStringSerialNumber[];
* Other descriptors can't be provided statically, they must be provided
* dynamically at runtime.
*
* Descriptor properties are or-ed or added together, e.g.:
* #define USB_CFG_DESCR_PROPS_DEVICE (USB_PROP_IS_RAM | USB_PROP_LENGTH(18))
*
* The following descriptors are defined:
* USB_CFG_DESCR_PROPS_DEVICE
* USB_CFG_DESCR_PROPS_CONFIGURATION
* USB_CFG_DESCR_PROPS_STRINGS
* USB_CFG_DESCR_PROPS_STRING_0
* USB_CFG_DESCR_PROPS_STRING_VENDOR
* USB_CFG_DESCR_PROPS_STRING_PRODUCT
* USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
* USB_CFG_DESCR_PROPS_HID
* USB_CFG_DESCR_PROPS_HID_REPORT
* USB_CFG_DESCR_PROPS_UNKNOWN (for all descriptors not handled by the driver)
*
* Note about string descriptors: String descriptors are not just strings, they
* are Unicode strings prefixed with a 2 byte header. Example:
* int serialNumberDescriptor[] = {
* USB_STRING_DESCRIPTOR_HEADER(6),
* 'S', 'e', 'r', 'i', 'a', 'l'
* };
*/
#define USB_CFG_DESCR_PROPS_DEVICE 0
#define USB_CFG_DESCR_PROPS_CONFIGURATION 0
#define USB_CFG_DESCR_PROPS_STRINGS 0
#define USB_CFG_DESCR_PROPS_STRING_0 0
#define USB_CFG_DESCR_PROPS_STRING_VENDOR 0
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT 0
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER 0
#define USB_CFG_DESCR_PROPS_HID 0
#define USB_CFG_DESCR_PROPS_HID_REPORT 0
#define USB_CFG_DESCR_PROPS_UNKNOWN 0
/* ----------------------- Optional MCU Description ------------------------ */
/* The following configurations have working defaults in usbdrv.h. You
* usually don't need to set them explicitly. Only if you want to run
* the driver on a device which is not yet supported or with a compiler
* which is not fully supported (such as IAR C) or if you use a differnt
* interrupt than INT0, you may have to define some of these.
*/
/* #define USB_INTR_CFG MCUCR */
/* #define USB_INTR_CFG_SET ((1 << ISC00) | (1 << ISC01)) */
/* #define USB_INTR_CFG_CLR 0 */
/* #define USB_INTR_ENABLE GIMSK */
/* #define USB_INTR_ENABLE_BIT INT0 */
/* #define USB_INTR_PENDING GIFR */
/* #define USB_INTR_PENDING_BIT INTF0 */
/* #define USB_INTR_VECTOR INT0_vect */
#endif /* __usbconfig_h_included__ */
Loading…
Cancel
Save